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We obtain the energies of the stationary states of a rigid rotor under weak and strong pertur- 
bations by means of Rayleigh-Schr6dinger perturbation theory combined with the diagonal 
hypervirial and Hellmann-Feynman theorems that facilitate the calculation. We show analytic 
expressions for both expansions that are sufficiently general for most practical applications of 
the model. 

1. Introduct ion 

The rigid rotor  in a classical external field has long been a suitable model for 
the estimation of  moments  of inertia [1- 3], dipole moments  [1-3], and polarizabil- 
ity anisotropies [3,4] of  linear and symmetrical-top molecules from microwave 
spectra. Rayleigh-Schr6dinger perturbation theory provides simple analyt ical  
expressions for the eigenvalues of a rotating molecule in terms of  its structural 
parameters,  quantum numbers, and the strength of the field [1-4]. This and other 
practical applications motivated that many authors derived perturbation correc- 
tions of  increasingly larger order for weak-field expansions [4-15]. These series 
have nonzero radii of  convergence that increase with the quantum numbers [10,16] 
and are therefore suitable for the investigation of physical phenomena involving 
excited states. For  low-lying states and sufficiently strong fields the weak-field ser- 
ies may not converge or may converge too slowly for practical applications. 

In addition, it is possible to construct an alternative series that is accurate for 
extremely strong fields [ 17-19]. Unlike the weak-field series the strong-field expan- 
sion appears to be asymptotically divergent; however, there are renormalized series 
that match the weak and strong regimes giving results as accurate as those obtained 
from nonperturbative approaches [9-11 ]. 

There are several algorithms that facilitate the calculation of  analytical and 
numerical perturbation corrections of large order [5-15,17-20]. Among them we 
ment ion the method based on the diagonal hypervirial theorem and Hellmann- 
Feynman theorem that appears to be simpler and more powerful than the others 
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[8-11,20]. This hypervirial perturbative method (HPM) is a convenient choice 
when one is only interested in the energies of the stationary states and at most in 
some expectation values because it belongs to the class of perturbation theories 
that do not produce explicit wave functions [21,22]. 

There is a renewed interest in perturbed rigid rotors as they appear in statistical 
models for the calculations of capture rate coefficients for the interaction of ions 
with neutral molecules [23,24] and in brute force orientation of polar molecules in a 
molecular beam [25]. The perturbations in the former application are more compli- 
cated than the simple interaction between an electric field and a dipole. 

The rotational and vibrational molecular motions are not separable, but the 
examples above show that under certain circumstances the perturbed rigid rotor 
model is acceptable, not just in the weak-field limit, but also for strong interactions. 

In this paper we apply perturbation theory to a rigid rotor with a quite general 
perturbation that includes those mentioned above as particular examples. To this 
end we develop the HPM in a more convenient way generating both the weak- and 
strong-field expansions from only one eigenvalue equation (unlike previous 
approaches [8-11,20]). Moreover, we point out an intrinsic flexibility of perturba- 
tion theory with respect to the choice of the reference eigenvalue equation and to 
the grouping of terms in the interaction potential. 

In section 2 we introduce the model and derive the eigenvalue equation that we 
use afterwards to generate the hypervirial recurrence relations for the weak- and 
strong-field expansions developed in sections 3 and 4, respectively. Finally, we set 
forth our conclusions in section 5. 

2. The  model  

Throughout this paper we assume that the perturbed rigid rotor model provides 
a reasonable description of the physical phenomenon. For the sake of concreteness, 
we consider a symmetrical top with principal moments of inertia 14 = Is # Ic. It 
is customary to describe its position in space by means of the three Euler's angles 0, 
¢, and X [2], the first one giving the orientation of the body axis with respect to the 
z axis of a nonrotating system of coordinates. For most purposes it is sufficient to 
assume that the interaction is a periodic, even function of 0 with a minimum at 
0 = O: 

U(O+2~r)=V(O), U(-O)=U(O), U'(O)=O,  U"(O)>O. (1 )  

Since it does not depend on ¢ and X then the time-independent Schrrdinger equa- 
tion is separable and one exactly solves the eigenvalue equations for those angles 
leaving only the one for 0 [2]: 

{ l d d [M-gcos(O)] 2 } 
sin(O) - aK 2 V(O) + e 0(0) = 0 (2) 

sin(O) dO sin(O) 2 - " 
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For simplicity we introduce the dimensionless quantities 

a = I A / I c ,  v (o )  = 2IA u ( o ) / h  2 , = 2 1 A E / h  2 , ( 3 )  

where E is the energy. The quantum numbers M, K = 0, -t-1, -t-2, . . .  in (2) have 
the usual meaning [2]. In the absence of interaction (V = 0) the dimensionless 
energy reads [2] 

, ( J ,K)  = ( a -  1)K 2 + J ( J +  1), (4) 

in which the remaining quantum number J is a positive integer greater than the 
greatest value between IMI and IKI. The equations above apply to a spherical rotor 
ifa = 1. 

For the present purpose of the application of perturbation theory it is convenient 
to modify the eigenvalue equation (2) through the change of independent vari- 
able: 

~v(O) = sin(O) 1/2 ~9(0), (5) 

which leads to 

d[~.~ 2 a /3cos(0) V(O)+e+ (1-a)KE+l[~v(O) = 0 ,  (6) 
sin(0)~ + sin(0)2 

where 

a = M 2 + K 2 1 - ~ ,  /3= 2MK. (7) 

It is worth noticing that the new solution ~P satisfies Dirichlet boundary conditions 
at 0 = 0 and 0 = 7r: 

~(0) = ~ ( ~ ) = 0 .  (8) 

In subsequent sections we resort to (6) for the application of perturbation theory 
to a symmetrical top (/3 ¢- 0) or to a linear rotor (/3 = 0). 

3. Weak  field 

According to the properties of U(O) we can expand V(O) in a Fourier series of 
cos(j0). However, for the present application of perturbation theory it is conveni- 
ent to consider the equivalent power series 

o o  

V(O) = y ~  Vjcos(0y. (9) 
j=0 

Perturbation theory gives us the freedom to rearrange the interaction potential in 
many different ways. In order to introduce a perturbation parameter to keep track 
of the perturbation corrections we simply substitute 
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o0 

vjcJ cos(0/ (10) 
j=0 

for the expansion (9) and set the dummy perturbation parameter ~ equal to unity 
in the resulting expression for the energy. This strategy is consistent with the 
assumption that the potential coefficients ~- decrease with j.  The Fourier series 
provides another example of grouping (the sum of terms ~:~J cos(j0)) that we do 
not consider here because it leads to less simple HPM equations, 

To facilitate the application of perturbation theory we make use of the hypervir- 
ial and Hellmann-Feynman theorems outlined in the appendix. The set of func- 
tions 

J)(O)--sin(O)cos(O)), j = O ,  1 , . . . ,  (11) 

is sufficient for that purpose because everyJ)(O) vanishes at 0 = 0 and 0 = 7r and 
removes the denominator sin(6) 2 in the second and third terms of (6) from the 
hypervirial relations. In this way we obtain a recurrence relation for the integrals 

/; C (j) = ~(0) 2 cos(0) ) dO, (12) 

where we arbitrarily choose g' to be normalized to unity in [0, rr]" C (°) = 1. Substitu- 
tion of(11) into (A.9) with r/h 2 = 1, x = 0, and V given by (10) leads to 

( j +  1 ) [ 2 £ - ½ ( j +  1)2]C (j+l) - f l ( 2 j +  1)C (j) 

+ j ( j 2  + 2a -- 2E + 1)C (j-i) -J-" (j  - 1)(j - 2)C (j-3) 
2 

oo 

+ Z Vk{k[ (2j + k)C(J+k-1)- (2J -4- k -4- 2)C (j+k+l)] = O, (13) 
k=l 

C (i) 0 if i < 0, and wherej  = O, 1,- -., = 

£ = e + ( 1 - a ) K  2 -  Vo+¼. (14) 

As indicated in the appendix we need the Hellmann- Feynman theorem 
oo 

O__EE = ~ k{k_ l VkC(k) (15) 
0 ~  k = l  

in addition to the hypervirial theorem in order to complete the perturbation calcu- 
lation. 

Expanding the dimensionless energy and the expectation values in Taylor series 
about { = 0, 

oo oo 

£ = Z g*'~" C(j) = Z C(J )~'' (16) 
p=0 p=0 
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and collecting the coefficient of {P in (13) and (15) we obtain a recurrence relation 
for the perturbation corrections: 

C(pj+l ) = 2 { /3(2j + l)Cp (j) 
( j +  1) [4Es-- ( j  + 1) 2] 

+ j ( 2 E 0 - j  2 2~ 1)Cp (j-l/ J - - + ~ ( j -  1 ) ( j -  2)C (j-3) 

P 
+ 2  Z gs[ jC(j-]I, - (j + 1)C(J-+I'] 

.~--1 

X-" [ p 21 c'(J+k+l) - (2j + k,_p_ k ]  t~(J+k-1)] "1 vktIzJ+ + ,:,_k jj' (17) 
k=l 

and a connection between the perturbation corrections to the energy and expecta- 
tion values: 

1 p+l k c /_L1 (18) 
g,+l - -p  + 1 k=l 

In order to calculate all the corrections to the energy through order r we use the 
recurrence relation (17) with p = 0, 1, . . .  r - 1 and j = 0, 1, . . . ,  r - p  - 1 taking 
into account that  C (°) = 6,0 and that  CJ i) = 0 if s < o. At the end of every loop we 
calculate the corresponding correction to the energy by means of (18). The first 
three of them are 

E1 = ~ V 1 ,  (19) 

1 { 
E2 - 8e3(4e _ 3) (3/32 + 5/32e - 12de2 + 4e3) V~ 

+ 4[3/32 - 2(1 + 2d)e + 4e2]e2 V2}, (20) 

~3 16eS(4e --fl-3)(e - 2) { [6/32 + 19/32e + (9/32- 24d)e2 - 28de3 + 20e41 V3 

+ 4[6/32 + 7/32e - 4(1 + 5d)e 2 + 12e3]e 2 II1 V2 

+ 4[8 + 5/32 + 4d - 6(3 + 2d)e + 12e2]e4 V3 / , (21) 

which we decided to write in terms of 

e = E o - ¼ = J ( J + l ) ,  d = c ~ + ¼ = M 2 + K  2 (22) 

to simplify the resulting expressions. We have calculated perturbation corrections 
of larger order that  we do not show here because they are too long. Aided by avail- 
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able software for computer algebra one obtains as many analytical corrections as 
the computer memory supports through eqs. (17) and (18). Finally, we write the 
rotational energy in terms of the quantum numbers, the molecular parameters, and 
the potential-energy coefficients as 

E(J ,M,K)= ( V o + J ( J + l ) + ( a - l ) K 2 + j ~ = l ~ j ) .  (23) 

For appropriate particular choices of the potential-energy coefficients the expres- 
sions above reduce to those used in the calculation of moments of inertia, dipole 
moments, polarizability anisotropies, and capture rate coefficients [1-4,23,24]. 

Former applications of the HPM have been based on generalized hypervirial 
relations for Sturm-Liouville eigenvalue equations [8-11,20]; here we have 
resorted to a much simpler Schr6dinger equation in one dimension. 

4. Strong field 

When the potential well V(O) is sufficiently deep the stationary states with energy 
much lower than the potential barrier become localized about the minimum at 
0 = 0 and the probability of tunneling is negligible. Such states resemble those of an 
anharmonic oscillator more than the rigid rotor ones. If we met such conditions in 
classical mechanics we would try an approach based on small oscillation ampli- 
tudes. The same strategy applies in quantum mechanics as we show in what follows. 
The accuracy of this approximation increases not only with the depth of the well 
but also with the moments of inertia of the molecule suggesting that it is a semiclas- 
sical approach in agreement with the fact that tunneling is negligible. 

In order to obtain the semiclassical series for the stationary states of the quasi- 
oscillator just described we expand the potential-energy function about its mini- 
m u m a t  0 = O: 

V(O) = Z vkOZ~" (24) 
k----O 

For convenience we define 

V(O)- 02 ,,o ,~ - ~ FjO 2j , G(O) = F(O)cos(O) = ~ GjO 22 , (25) 
sin(0) 2 

and obtain the expansion coefficients by means of the recurrence relations 

Fn = 6.0 - Fn-j, G. = (26) 
j=l (2j + 2)! j=0 (2j)! n-j 

suitable for computer algebra. 
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After expanding every term of (6) in Taylor or Laurent series about 0 = 0 we 
define a new variable 

q = x/~0, (27) 

where w plays the role of an oscillator frequency. Adding and subtracting q2 to the 
expanded equation we finally have 

+ (28) 
j = l  ,2' 

where 

= -  e + ( l _ a ) K 2 +  ¼ 2 a + / 3  (29) 
w 6 v0 , 

UJ = wl (vj + aFj+l - 3Gj+l - w26jl) , (30) 

and ~ is a dummy perturbation parameter that we set equal to 1/w at the end of 
the calculation to recover the original eigenvalue equation. Since the change of 
variable (27) maps the interval (0, 7r) onto (0, v/-~) and the application of perturba- 
tion theory about ~ = 0 is equivalent to taking the limit w-+ ~ then the actual inter- 
val of the variable q is (0, ~ ) .  Solving the unperturbed equation 

( -  d~2 ÷ ~ - t -  q2 - E0) ~0 -- 0 (31) 

by means of any of the available textbook methods one obtains 

E 0 = 4 n + v / 4 ( a - / 3 ) + l + 2 = 2 ( 2 n + [ M - K  I + l ) ,  n = 0 , 1 ,  . . . .  (32) 

The diagonal hypervirial equation (A.9) with r/h 2 = 1, x = q, a n d f  = f N  = qN, 
N = 0, 1,. . . ,  gives us a recurrence relation for the expectation values 

Q(N) = k~(q)2q 2N dq (33) 

that we normalize according to Q(0) = 1. Exactly as in the precedent case we expand 
E and every Q(N) in Taylor series about ~ = 0. The diagonal hypervirial relations 
lead to 

1 f P e,,++l) 4(N + I) '[N[4N2 +4(/3-00- l]Qp (N-'> + 2(2N + I) y~: ~ n(u) - -  S ~ p _  s 
s=O 

P . ,  ,-,(N+j) 
- 2 ~-'~=(2N + / +  l)uj~p_: , (34) 

J j=l  

and from the Hellmann-Feynman theorem we obtain 
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p+l 
_ 1 x - - ' , .  , . , ( j )  

Ep+l p + 1 d--'juj~dJ;-J+l" (35) 
j= l  

One easily calculates the corrections to the energy through order r from these two 
equations with p --- 0, 1, . . . ,  r - 1 and N = 0, 1, . . . ,  r - p  - 1. The first three ones 
are 

E0 (36) 
~1 = T u l ,  

, 3  3 - 2  £2 + ~(Z + a - fl + , (37) ~___ - -  ~ 0 ) U 2  

 0u3 ,3  /3+3 2)UlU 2 ~3 =/~ ~-~(~+~- 

+ ¼[Z~ + 3(c~ - /3)  + ~;21£ou3 , (38) 

where 

1 (  8a+7 /3  ) 
u l = -  V I + - -  co2 (39) 

w 120 ' 

1 ( 32a + 31/3"~ 
u 2 = -  1/2+ (40) 

co 767~ 2 '  

1 ( 128a + 127/3~ 
u 3 = -  V3-t . (41) co 8-~0-6 / 

One easily calculates many other perturbation corrections by means of eqs. (34) 
and (35) and straightforward computer algebra. The energy of the stationary states 
of the system read 

h2 [co 2a + fl ~ E,+l] E(n'M'K) =~A __~° + (a-1)K2 - 1 + - - - - ~  + VO + ~I + ~=I--~-- ] . (42) 

The choice of the parameter co depends on the problem and on the particular 
application of the resulting expressions. This freedom illustrates the flexibility of 
perturbation theory with respect to the approximation of order zero. If interested 
in accurate numerical calculation one may set co to improve the convergence of the 
series. In such a case the value of co must depend on the number of terms in the 
expansion [22]. To obtain sufficiently accurate analytical expressions one simply 
chooses 

co' = -v/V1 + (84 + 7fl)/120, (43) 
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which removes the correction of first order. On the other hand, the choice 

j ,  = _ 0 ) 
h (44) 

most plainly reveals the semiclassical nature of the strong-field expansion as the 
perturbation parameter 1/J '  is proportional to the Planck constant and is in 
inverse relation to the moment of inertia IA. The accuracy of this expansion also 
increases with the curvature of the potential-energy function at its minimum. 

5. Conclus ions  

We have considered the behaviour of a quantum-mechanical rigid rotor with a 
periodic perturbation under two extreme conditions. If the energy of the stationary 
state is much greater than the interaction then one applies the weak-field expan- 
sion. If, on the other hand, the energy of the stationary state is much lower than the 
potential barrier then the strongfield expansion is a better approximation. There- 
fore, when the interaction is smaller than the energy of the ground state of the free 
rotor the former approach applies to all states. However, if the interaction is suffi- 
ciently strong there will be states that clearly belong to one or the other description, 
and others with intermediate energies that are more difficult to treat because they 
may be beyond the range of validity of either expansion. In the latter case one may 
still obtain accurate results by means of properly renormalized series [9-11]. As sta- 
ted before present results apply only when the perturbed rigid rotor is a suitable 
model for the physical phenomenon. Recent theoretical investigations assume that 
this is the case under certain circumstances [23- 25]. However, in other cases (or 
in more realistic approaches) one is forced to consider the effect of the perturbation 
on the molecular vibration. If one cannot assume total separability of the degrees 
of freedom then the HPM is not applicable. 

The present discussion of the weak- and strong-field expansions for a perturbed 
rigid rotor is more general than previous treatments because we have not complete- 
ly specified the interaction potential. Substituting particular potential coefficients 
for the undetermined ones Vj and vi one obtains analytical expressions for the ener- 
gies of most of the examples that appear in the literature [1- 4,20,23,24]. 

It has also been our purpose to reveal a great deal of freedom in perturbation the- 
ory with respect to the choice of the reference or unperturbed model as well as 
with regard to the rearrangement of the perturbation. The latter is in fact much 
more arbitrary and flexible than what we have shown here but an exhaustive discus- 
sion of this point is beyond the scope of this paper. 

The HPM is a simple and powerful tool for the calculation of perturbation cor- 
rections to the energy of separable quantum- mechanical models. Unlike other 
approaches the HPM equations do not become more complicated as the terms of 
the potential energy function increase in number. Earlier numerical calculations 
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have shown that when the perturbation parameter is within the range of utility of 
the series, the perturbation expansion for perturbed rigid rotors is as accurate as 
the eigenvalues obtained by diagonalization of the Hamiltonian matrix [8-11]. 
Furthermore, it is possible to construct renormalized perturbation series that are 
valid for all values of the perturbation parameter [9-11]. The HPM is particularly 
suitable for the application of computer algebra allowing the calculation of many 
corrections in closed form. In the present paper we have derived the HPM equa- 
tions for the weak- and strong-field expansions from just one simple eigenvalue 
equation instead of using one for each expansion as in former applications of the 
method [8-11,20]. In addition to this, the HPM recurrence relations derived here 
appear to be simpler than those used before. 
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Appendix  

To make this paper self-contained we briefly derive the main equations through 
which the hypervirial perturbative method (HPM) allows a simple and efficient cal- 
culation of the corrections of the Rayleigh-Schr6dinger perturbation theory 
[21,22]. If if' is an eigenvector of the Hermitian operator H with eigenvalue E 

H g s  = Egs  (A.1) 

and A is a linear operator such that AO belongs to the domain of H then the diago- 
nal hypervirial theorem reads [21 ] 

(OI[H, A]Ig r) = 0, (A.2) 

in which [H, A] denotes the commutator H A  - A H .  If the operator H depends on 
a parameter ~ (which may be a charge, a mass, the intensity of an external field, 
etc.) then the Hellmann-Feynman theorem states that 

= ~1 ~ I~'> • (A.3) 

From now on we assume that (kolO) = 1 and write (A> for <OlAIO>. 
The HPM applies only to one-dimensional or fully separable quantum-mechan- 

ical problems because only in such simple cases one can transform the diagonal 
hypervirial theorem into a recurrence relation for some set of functions of the coor- 
dinate operator. For concreteness we therefore assume that 
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H = rlp 2 + V(x), (A.4) 

where x and p are the coordinate and its conjugate momentum,  respectively, 
([x,p] = ih) and 7/is a real positive number  (such as, for example, 1/(2m), 1/(2IA), 
etc.). Choosing 

A =f (x )p  + g(x), (A.5) 

we easily prove that 

[H,A] = rl(2[p,/Ip 2 + 2[p, glp + [p, [P,J~IP + [P, ~o,g]]) +f[V,p].  (A.6) 

If  

g = - ½ b , s l  

then the terms that are linear inp in (A.6) cancel each other and we write 

([H,  A]) = -2Lq([p[p, [p,f]]]) + 2E( [p , f ] )  - 2([p,f] V) - (fED, V]) = 0. 

(A.7) 

(A.8) 
In the coordinate representat ionp = - ihd/dx and (A.8) becomes 

~ 2  0 c'") + 2 E ( / " )  - 2 ( f ' V )  - ( f V ' )  = 0. (A.9) 

Sometimes it is necessary t ha t f (x )  satisfies the boundary conditions for AO to 
belong to the domain of  H.  Suppose, for example, that the eigenfunctions of H are 
defined on the interval (xl, x2), -cx~ <Xl < x2 < oo, and satisfy Dirichlet boundary  
conditions at the endpoints. Since O'(x) vanishes neither at Xl nor at x2 t h e n f ( x )  
has to vanish at those points. This is in fact the case of  the set of functionsj')(0) used 
in section 3. 
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